انعطاف پذیری مغز چیست؟

جدول محتوایی

برچسب‌ها
آریپیپرازول چیست؟ اختلالات ژنتیکی به نام لوکودیستروفی اسپاستیسیتی، پاراپلژی، بیماری نرون حرکتی افسردگی سایکوتیک انوکساپارین چیست؟ دکتر حبیبه نژاد بیگلری بیماری HSP بیماری خود ایمنی بیماری میتوکندریال بیماریهای متابولیک چیست؟ بیماری پارکینسون بیماری کاناوان چیست؟ تری هگزیفنیدیل - آرتان تشنج حبیبه نژاد بیگلری داروهای ضد صرع داروهای موثر بر سیستم اعصاب مرکزی داروی توپیرامات چیست؟ داروی زیپکس چیست داروی ضد زوال عقل دکتر حبیبه نژاد بیگلری داروی نیترازپام چیست؟ درباره داروی لاکوزامید درباره داروی یونی ماید درباره منیزیم در درمان تشنج هایی که به سایر دارو پاسخ نداده است استفاده می شود درمان دمانس واسکولار دستور عمل اجرایی و ابزار غربالگری تکامل دونپزیل دکتر حبیبه نژاد بیگلری دکتر حبیبه نژاد بیگلری فوق تخصص مغز و اعصاب کودکان دکتر حبیبه نژاد بیگلریفوق تخصص مغز و اعصاب کودکان رقیق کننده خون شبیه هپارین سیبلیوم فوق تخصص مغز و اعصاب فوق تخصص مغز و اعصاب کودکان فوق تخصص مغزو اعصاب کودکان فوق تخصص مغز و اعصای کودکان قرص رهاکین قرص ملاتونین چیست؟ لاکوزامید چیست؟درباره داروی لاکسا لوتیراستام لوپوس اریتماتوز نوار مغز چیست دکتر حبیبه نژاد بیگلری فوق تخصص مغز و اعصاب کودکان ویروس‌های هرپس سیمپلکس ویگاباترین کمک به درمان حمله های میگرن

انعطاف پذیری مغز چیست؟

انعطاف پذیری مغز که انعطاف پذیری عصبی نیر نامیده می‌شود، یک کلمه عجیب و غریب برای اکثر مردم است. با این وجود انعطاف پذیری عصبی یک عبارت رایج برای متخصصان علوم اعصاب است. انعطاف پذیری عصبی به معنای توانایی مغز برای تغییر در هر سنی است. این تغییر می‌تواند در جهت بهتر و یا بدتر شدن مغز باشد. همان گونه که تصور می کنید، این انعطاف پذیری نقش خیلی مهمی در پیشرفت و یا زوال مغز و نیز در شکل دهی شخصیت های متمایز ما دارد.

مغز چگونه تغییر می‌کند؟
علم انعطاف پذیری مغز، مطالعه یک فرایند فیزیکی است. ماده خاکستری مغز می‌تواند نازک و یا ضخیم شود. اتصالات عصبی جدیدی می‌تواند ساخته و یا ضعیف و قطع شود. تغییر در ظاهر فیزیکی مغز به معنای تغییر در توانایی های ماست.
برای مثال، هر زمان که ما یک مرحله از یک رقص جدید را یاد بگیریم، تغییری در ظاهر فیزیکی مغز ما به وجود می‌آید. سیم پیچی های جدید (مسیرهای عصبی جدید) که دستور العمل هایی را برای انجام هر مرحله به بدن ما صادر می کند. هر زمان که نام کسی را فراموش کنیم، تغییری در مغز ما به وجود آمده است. سیم پیچی هایی که به حافطه ما متصل بوده اند، ضعیف و یا حتی قطع شده‌اند. همان‌گونه که مثال‌های بالا نشان می‌دهند، هر گونه تغییری در مغز سبب پیشرفت مهارت های ما (یک رقص جدید) و یا ضعیف شدن مهارتهایمان (فراموشی نام افراد) میشوند.

دانشمندان علوم مغز و اعصاب زمانی تصور می‌کردند که انعطاف‌پذیری عصبی فقط در دوران کودکی بروز می‌کند، اما تحقیقات در نیمه دوم قرن بیستم نشان داد که بسیاری از جنبه‌های مغز حتی تا بزرگسالی نیز قابل تغییر هستند (یا «منعطف» هستند). با این حال، مغز در حال رشد درجه بالاتری از انعطاف‌پذیری نسبت به مغز بزرگسالان را نشان می‌دهد. انعطاف‌پذیری وابسته به فعالیت می‌تواند پیامدهای قابل توجهی در رشد سالم، یادگیری، حافظه و بهبودی از آسیب مغزی داشته باشد.

اصطلاح «انعطاف‌پذیری» برای اولین بار در سال ۱۸۹۰ توسط ویلیام جیمز در کتاب «اصول روانشناسی» به رفتار اعمال شد. به نظر می‌رسد اولین شخصی که از اصطلاح انعطاف‌پذیری عصبی استفاده کرده‌است، دانشمند علوم اعصاب لهستانی جرزی کنورسکی بوده‌است.

در سال ۱۷۹۳، میشل ویچنزو مالاکارن، آناتومیست ایتالیایی آزمایش‌هایی را توصیف کرد که در آن او حیوانات را جفت کرد، یکی از این جفت‌ها را سالها به‌طور گسترده آموزش داد و سپس هر دو را کالبد شکافی کرد. او کشف کرد که مخچه حیوانات آموزش دیده بسیار بزرگتر است. اما این یافته‌ها سرانجام فراموش شد. وی تصور کرد که مغز و عملکرد آن در تمام بزرگسالی ثابت نیست. تا حدود دهه ۱۹۷۰، دانشمندان علوم مغز و اعصاب معتقد بودند که ساختار و عملکرد مغز اساساً در تمام بزرگسالی ثابت است.

در حالی که در اوایل دهه ۱۹۰۰ مغز معمولاً به عنوان عضوی غیرقابل تجدید قابل درک بود، سانتیاگو رامون و کاخال، پدر علوم اعصاب، از اصطلاح انعطاف‌پذیری عصبی برای توصیف تغییرات غیر آسیب شناختی در ساختار مغز بزرگسالان استفاده کرد. کاخال ابتدا بر اساس اصل معروف خود به نام نورون، نورون را به عنوان واحد اساسی سیستم عصبی توصیف کرد که بعداً به عنوان بنیادی اساسی برای توسعه مفهوم انعطاف‌پذیری عصبی عمل کرد. وی از اصطلاح انعطاف‌پذیری در اشاره به کار خود در مورد یافته‌های انحطاط و بازسازی در سیستم عصبی مرکزی پس از رسیدن یک فرد به بزرگسالی، به‌طور خاص، استفاده کرد. بسیاری از دانشمندان علوم اعصاب از اصطلاح انعطاف‌پذیری فقط برای توضیح ظرفیت بازسازی سیستم عصبی محیطی استفاده کردند، که انتقال مفهومی این اصطلاح توسط کاخال باعث بحثی برانگیز شد.

نوروپلاستیسیتی این باور قبلی را که مغز را یک عضو ایستا (به انگلیسی: Static) می‌داند را عوض کرده و بیان می‌دارد چطور و چگونه مغز در طول زندگی تغییر می‌کند.  نقش نوروپلاستیسیتی به‌طور وسیع در رشد سالم، یادگیری، حافظه و بهبود یافتنِ آسیب، شناخته شده‌است. در طول قرن بیستم، دانشمندان مغز و اعصاب توافق داشتند که ساختار مغز پس از یک دوره بحرانی در دوران کودکی نسبتاً تغییرناپذیر است. این باور توسط یافته‌هایی که نشان می‌دهد بسیاری از جنبه‌های مغز حتی در دوران بزرگسالی هم انعطاف‌پذیر (به انگلیسی: Plastic) باقی می‌ماند، به چالش کشیده می‌شود.

در سال ۱۹۲۳، کارل لشلی آزمایش‌هایی بر روی میمونهای رزوس انجام داد که تغییرات در مسیرهای عصبی را نشان می‌داد، که به این نتیجه رسید که شواهدی از انعطاف‌پذیری است. با وجود این، و تحقیقات دیگری که نشان می‌دهد انعطاف‌پذیری صورت گرفته‌است، دانشمندان علوم مغز و اعصاب ایده انعطاف‌پذیری عصبی را به‌طور گسترده قبول نکردند.

در سال ۱۹۴۵، جوستو گونزالو از تحقیقات خود در مورد پویایی مغز نتیجه گرفت که، بر خلاف فعالیت مناطق تجسم، توده قشر مغز “مرکزی” (فاصله کم و بیش مساوی از مناطق تجسم بصری، لمسی و شنوایی)، ” توده مانور “، کاملاً غیر خاص یا چند حسی، با قابلیت افزایش تحریک پذیری عصبی و سازماندهی مجدد فعالیت با استفاده از ویژگی‌های انعطاف‌پذیری. وی به عنوان اولین نمونه از سازگاری، برای دیدن قائم با عینک معکوس در آزمایش استراتون و به ویژه، چندین مورد آسیب دیدگی مغز دست اول که در آنها خواص پویا و انطباقی را در اختلالات آنها، به ویژه در موارد معکوس مشاهده کرد. وی اظهار داشت که یک سیگنال حسی در یک ناحیه تجسم فقط یک طرح کلی معکوس و منقبض است که به دلیل افزایش توده مغزی استخدام شده بزرگ می‌شود و به دلیل برخی از تأثیرات انعطاف‌پذیری مغز دوباره معکوس می‌شود، در مناطق مرکزی تر، به دنبال رشد مارپیچی می‌باشد.

ماریان دایموند از دانشگاه کالیفرنیا، برکلی، اولین شواهد علمی در مورد انعطاف‌پذیری آناتومی مغز را ارائه داد و تحقیقات خود را در سال ۱۹۶۴ منتشر کرد.

سایر شواهد مهم در دهه ۱۹۶۰ و بعد از آن، به ویژه از دانشمندان از جمله پاول باخ-ریتا، مایکل مرزنیچ به همراه Jon Kaas و همچنین چندین نفر دیگر، ارائه شد.

در دهه ۱۹۶۰، پل باخ-ریتا دستگاهی را اختراع کرد که روی تعداد کمی از افراد آزمایش شده بود، و شخصی را که روی صندلی نشسته بود، در آن قرار داشت و تو خالی‌های توکار تعبیه شده بود که برای لرزش از طریق ترجمه تصاویر دریافت شده در دوربین، نوعی دید از طریق تعویض حسی را به ما می‌دهد.

مطالعات در مورد افرادی که از سکته مغزی بهبود می‌یابند، پشتیبانی از انعطاف‌پذیری عصبی را نیز فراهم می‌کند، زیرا مناطقی از مغز که سالم می‌مانند، ممکن است عملکردهایی را که از بین رفته‌اند، حداقل تا حدی انجام دهند. شپرد ایوری فرانز در این منطقه کار می‌کرد.

النور مگوایر تغییراتی را در ساختار هیپوکامپ مرتبط با کسب دانش در مورد چیدمان لندن در رانندگان تاکسی محلی ثبت کرد. توزیع مجدد ماده خاکستری در رانندگان تاکسی لندن در مقایسه با شاهد نشان داده شد. این کار در مورد انعطاف‌پذیری هیپوکامپ نه تنها دانشمندان را مورد توجه قرار داد، بلکه مردم و رسانه‌ها را در سراسر جهان درگیر خود کرد.

مایکل مرکنیچ یک دانشمند علوم اعصاب است که بیش از سه دهه یکی از پیشگامان انعطاف پذیزی عصبی بوده‌است. وی برخی از «بلندپروازانه‌ترین ادعاها را برای این زمینه – اینکه تمرینات مغزی ممکن است به اندازه داروها برای درمان بیماری‌های شدید مانند اسکیزوفرنی – مفید باشد، مطرح کرده‌است. یاد بگیرید، فکر کنید، درک کنید و به خاطر بسپارید حتی در افراد مسن نیز امکان‌پذیر است.» کارهای مرکینچ تحت تأثیر کشف حیاتی دیوید هوبل و تورستن ویزل در کار با بچه گربه‌ها قرار گرفت. این آزمایش شامل دوختن یک چشم بسته و ضبط نقشه‌های مغز قشر مغز بود. هوبل و ویزل مشاهده کردند که بخشی از مغز بچه گربه که با چشم بسته در ارتباط است، همان‌طور که انتظار می‌رفت بیکار نیست. در عوض، اطلاعات بصری را از چشم باز پردازش می‌کرد. این «… گویی مغز نمی‌خواست» املاک و مستقلات قشر مغز «را هدر دهد و راهی برای سیم کشی مجدد خود پیدا کرده بود.»

این امر به معنی ضعف انعطاف‌پذیری عصبی در دوره حساس است. با این حال، مرکنیچ استدلال کرد که انعطاف‌پذیری عصبی می‌تواند فراتر از دوره بحرانی رخ دهد. اولین برخورد او با انعطاف‌پذیری بزرگسالان زمانی بود که در یک مطالعه پس از دکتری با کلینتون ووسلی مشغول بود. این آزمایش بر اساس مشاهده آنچه در هنگام قطع یک عصب محیطی و متعاقب آن در مغز اتفاق افتاده بود، انجام شد. این دو دانشمند نقشه دستی مغز میمونها را قبل و بعد از بریدن عصب محیطی و دوختن انتهای آن به میکرو میکرومپ کردند. پس از آن، نقشه دستی در مغز که انتظار داشتند بهم بریزد تقریباً طبیعی بود. این یک موفقیت اساسی بود. مرکنیچ ادعا کرد که: «اگر نقشه مغز بتواند ساختار خود را در پاسخ به ورودی غیرعادی عادی کند، این دیدگاه غالب که ما با یک سیستم سیم کشی متولد شده‌ایم باید اشتباه باشد. مغز باید انعطاف‌پذیر باشد.» مرکنیچ سال ۲۰۱۶ جایزه کاولی در علوم اعصاب «برای کشف مکانیزمی که به تجربه و فعالیت عصبی اجازه می‌دهد عملکرد مغز را دوباره سازی کند.» دریافت کرد.

کریستوفر شاو و جیل مک ایچرن در «به سوی نظریه نوروپلاستیک» بیان کردند که هیچ نظریه همه شمولی وجود ندارد که چارچوب‌ها و سیستم‌های مختلف را در بررسی نوروپلاستیک پشت سر بگذارد. با این حال، محققان غالباً نوروپلاستیک را به عنوان «توانایی ایجاد تغییرات انطباقی مربوط به ساختار و عملکرد سیستم عصبی» توصیف می‌کنند. به همین ترتیب، دو نوع انعطاف‌پذیری عصبی غالباً مورد بحث قرار می‌گیرند: انعطاف‌پذیری عصبی ساختاری و انعطاف‌پذیری عصبی عملکردی.

خاصیت انعطاف‌پذیری ساختاری اغلب به عنوان توانایی مغز در تغییر ارتباطات عصبی خود درک می‌شود. سلول‌های عصبی جدید بر اساس این نوع از انعطاف‌پذیری عصبی در طول عمر به‌طور مداوم تولید و در سیستم عصبی مرکزی ادغام می‌شوند. امروزه محققان از روش‌های تصویربرداری مقطعی متعدد (به عنوان مثال تصویربرداری تشدید مغناطیسی (MRI)، توموگرافی کامپیوتری (CT)) برای مطالعه تغییرات ساختاری مغز انسان استفاده می‌کنند. این نوع از نوروپلاستیک اغلب اثر محرک‌های داخلی یا خارجی مختلف را بر روی سازماندهی مجدد آناتومی مغز بررسی می‌کند. تغییرات نسبت ماده خاکستری یا قدرت سیناپسی در مغز به عنوان نمونه‌هایی از نوروپلاستیک ساختاری در نظر گرفته می‌شود.

انعطاف‌پذیری عملکردی به توانایی مغز در تغییر و انطباق با ویژگیهای عملکردی سلولهای عصبی اشاره دارد. این تغییرات می‌تواند در پاسخ به فعالیت قبلی (انعطاف‌پذیری وابسته به فعالیت) برای به دست آوردن حافظه یا در پاسخ به سوء عملکرد یا آسیب نورون‌ها (انعطاف‌پذیری واکنش پذیر) برای جبران یک رویداد آسیب شناختی رخ دهد. در حالت دوم، عملکردها از یک قسمت مغز به قسمت دیگری از مغز منتقل می‌شوند که تقاضای تولید روندهای رفتاری یا فیزیولوژیکی را دارند. با توجه به اشکال فیزیولوژیکی انعطاف‌پذیری وابسته به فعالیت، از آنهایی که شامل سیناپس هستند، به عنوان انعطاف‌پذیری سیناپسی یاد می‌شود. تقویت یا تضعیف سیناپس‌ها که منجر به افزایش یا کاهش میزان شلیک سلول‌های عصبی می‌شود، به ترتیب تقویت طولانی مدت (LTP) و افسردگی طولانی مدت (LTD) نامیده می‌شوند، و آنها به عنوان نمونه‌هایی از انعطاف‌پذیری سیناپسی مرتبط با حافظه در نظر گرفته می‌شوند. مخچه یک ساختار معمول با ترکیبی از LTP / LTD و افزونگی در داخل مدار است که اجازه می‌دهد پلاستیک در چندین محل باشد. اخیراً واضح تر شده‌است که انعطاف‌پذیری سیناپسی را می‌توان با شکل دیگری از انعطاف‌پذیری وابسته به فعالیت مرتبط با تحریک پذیری ذاتی نورون‌ها، که به عنوان انعطاف‌پذیری ذاتی نامیده می‌شود، تکمیل می‌شود. این، به عنوان مخالفت با انعطاف‌پذیری هومواستاتیک لزوماً فعالیت کلی یک نورون را در یک شبکه حفظ نمی‌کند، بلکه به رمزگذاری خاطرات کمک می‌کند.

مغز بزرگسالان کاملاً «سیم کشی» با مدارهای عصبی ثابت نیست. موارد زیادی از سیم کشی مجدد قشر مغز و زیر قشر از سلولهای عصبی در پاسخ به آموزش و همچنین در پاسخ به آسیب وجود دارد. شواهدی وجود دارد که نشان می‌دهد نوروژنز (تولد سلول‌های مغز) در مغز بزرگسالان، پستانداران رخ می‌دهد – و چنین تغییراتی می‌تواند تا سنین پیری نیز ادامه یابد. شواهد مربوط به نوروژنز عمدتاً به هیپوکامپ و پیاز بویایی محدود می‌شود، اما تحقیقات اخیر نشان داده‌است که سایر قسمت‌های مغز، از جمله مخچه نیز ممکن است در آن دخیل باشند. با این حال، درجه سیم کشی ناشی از ادغام سلول‌های عصبی جدید در مدارهای شناخته شده مشخص نیست و ممکن است چنین سیم کشی مجدداً از نظر عملکردی زائد باشد.

یک نتیجه شگفت‌آور از انعطاف‌پذیری عصبی این است که فعالیت مغز مرتبط با عملکرد معین می‌تواند به مکان دیگری منتقل شود. این می‌تواند ناشی از تجربه طبیعی باشد و همچنین در روند بهبودی از آسیب مغزی رخ می‌دهد. نوروپلاستیک مسئله اساسی است که از پایه علمی برای درمان آسیب مغزی اکتسابی با برنامه‌های درمانی تجربی هدفمند در زمینه رویکردهای توان بخشی به پیامدهای عملکردی آسیب حمایت می‌کند.

انعطاف‌پذیری عصبی به عنوان نظریه ای محبوبیت پیدا می‌کند که حداقل تا حدی بهبود نتایج عملکرد با فیزیوتراپی پس از سکته مغزی را توضیح می‌دهد. تکنیک‌های توانبخشی که با شواهدی پشتیبانی می‌شوند که از سازماندهی مجدد قشر به عنوان مکانیسم تغییر استفاده می‌کنند، شامل حرکت درمانی ناشی از محدودیت، تحریک الکتریکی عملکردی، آموزش تردمیل با پشتیبانی از وزن بدن و درمان واقعیت مجازی است. درمان با کمک ربات یک تکنیک نوظهور است که فرض بر این است که از طریق انعطاف‌پذیری عصبی نیز کار می‌کند، اگرچه در حال حاضر شواهد کافی برای تعیین مکانیسم دقیق تغییر هنگام استفاده از این روش وجود ندارد.

یک گروه درمانی را توسعه داده‌اند که شامل افزایش سطح تزریق پروژسترون در بیماران آسیب دیده مغزی است. «تجویز پروژسترون پس از آسیب مغزی (TBI) و سکته مغزی باعث کاهش ادم، التهاب و مرگ سلول‌های عصبی و تقویت حافظه مرجع فضایی و بازیابی حسی حرکتی می‌شود.» در یک آزمایش بالینی، گروهی به شدت آسیب دیدند بیماران پس از سه روز تزریق پروژسترون ۶۰ درصد کاهش مرگ و میر داشتند. با این حال، یک مطالعه در مجله پزشکی نیوانگلند در سال ۲۰۱۴ با جزئیات نتایج یک آزمایش بالینی فاز ۳ با بودجه NIH با ۸۸۲ بیمار منتشر شده‌است، نشان می‌دهد که درمان آسیب مغزی حاد مغزی با هورمون پروژسترون هیچ سود قابل توجهی برای بیماران ندارد وقتی با دارونما مقایسه می‌شود.

تعدادی از مطالعات ارتباط مدیتیشن را با تفاوت در ضخامت قشر قشر یا چگالی ماده خاکستری مرتبط کرده‌اند. یکی از مشهورترین مطالعات برای اثبات این امر توسط سارا لازار، از دانشگاه هاروارد، در سال ۲۰۰۰ انجام شد. ریچارد دیویدسون، دانشمند علوم اعصاب در دانشگاه ویسکانسین، آزمایش‌هایی را با همکاری دالایی لاما بر روی تأثیر مدیتیشن بر مغز انجام داده‌است. نتایج وی حاکی از آن است که تمرین طولانی مدت یا کوتاه مدت مدیتیشن می‌تواند منجر به سطوح مختلفی از فعالیت‌ها در مناطق مغزی شود که با تأثیراتی مانند توجه، اضطراب، افسردگی، ترس، عصبانیت و دلسوزی و همچنین توانایی بدن در خود را شفا دهد. این تغییرات عملکردی ممکن است در اثر تغییراتی در ساختار فیزیکی مغز ایجاد شود.

ورزش هوازی با افزایش تولید فاکتورهای نوروتروفیک (ترکیباتی که رشد یا بقای سلول‌های عصبی را تقویت می‌کنند)، از جمله فاکتور نوروتروفیک مشتق از مغز (BDNF)، فاکتور رشد انسولین مانند ۱ (IGF-1) و رشد اندوتلیال عروقی باعث ایجاد نوروژنز در بزرگسالان می‌شود. فاکتور (VEGF). نوروژنز ناشی از ورزش در هیپوکامپ با پیشرفت‌های قابل اندازه‌گیری در حافظه فضایی همراه است. ورزش مداوم هوازی طی یک دوره چند ماهه باعث پیشرفتهای چشمگیر بالینی در عملکرد اجرایی (به عنوان مثال، «کنترل شناختی» رفتار) و افزایش حجم ماده خاکستری در مناطق مختلف مغز، به ویژه مناطقی که باعث کنترل شناختی می‌شوند. ساختارهای مغزی که بیشترین بهبودها را در حجم ماده خاکستری در پاسخ به ورزش‌های هوازی نشان می‌دهند، قشر پیشانی و هیپوکامپ هستند. پیشرفت‌های متوسطی در قشر قدامی انقباض قدامی، قشر جداری، مخچه، هسته دمی دیده می‌شود، و هسته اکومبنس. نمرات آمادگی جسمانی بالاتر (با حداکثر VO2 اندازه‌گیری می‌شود) با عملکرد اجرایی بهتر، سرعت پردازش سریعتر و حجم بیشتری از هیپوکامپ، هسته دمی و هسته اکومبنس در ارتباط است.

امروزه اثر مفید چند زبانی بر رفتار و شناخت افراد کاملاً مشهور است. مطالعات متعدد نشان داده‌است که افرادی که بیش از یک زبان مطالعه می‌کنند، عملکرد شناختی و انعطاف‌پذیری بهتری نسبت به افرادی دارند که فقط به یک زبان صحبت می‌کنند. مشخص شده‌است که دو زبانه‌ها دارای دامنه توجه طولانی‌تر، مهارت‌های سازماندهی و تجزیه و تحلیل قوی تر و نظریه ذهنی بهتر از تک زبانه‌ها هستند. محققان دریافته اند که تأثیر چند زبانه در شناخت بهتر به دلیل قابلیت انعطاف‌پذیری عصبی است.

در یک مطالعه برجسته، زبان شناسان عصبی از یک روش مورفومتری مبتنی بر وکسل (VBM) برای تجسم پلاستیک ساختاری مغز در یک زبانه و دو زبانه سالم استفاده کردند. آنها ابتدا تفاوت چگالی ماده سفید و خاکستری را بین دو گروه بررسی کردند و رابطه ساختار مغز و سن فراگیری زبان را یافتند. نتایج نشان داد که تراکم ماده خاکستری در قشر تحتانی جداری برای چند زبانه به‌طور قابل توجهی بیشتر از یک زبانه است. محققان همچنین دریافتند که دوزبانه‌های اولیه تراکم بیشتری از ماده خاکستری نسبت به دوزبانه‌های دیررس در همان منطقه دارند. قشر آهیانه تحتانی یک منطقه مغزی است که بسیار با یادگیری زبان مرتبط است، که مربوط به نتیجه VBM مطالعه است.

مطالعات اخیر همچنین نشان داده‌است که یادگیری چندین زبان نه تنها باعث تغییر ساختار مغز می‌شود بلکه باعث افزایش قابلیت انعطاف‌پذیری مغز می‌شود. یک مطالعه اخیر نشان داد که چند زبانی نه تنها بر روی ماده خاکستری بلکه روی ماده سفید مغز نیز تأثیر می‌گذارد. ماده سفید از آکسونهای میلین شده تشکیل شده‌است که تا حد زیادی با یادگیری و ارتباط ارتباط دارد. زبان شناسان عصبی برای تعیین شدت ماده سفید سفید بین دو زبانه و دو زبانه از روش اسکن تصویربرداری تنسور انتشار (DTI) استفاده کردند. افزایش میلیناسیون در مجاری ماده سفید در افراد دوزبانه مشاهده می‌شود که به‌طور فعال از هر دو زبان در زندگی روزمره استفاده می‌کنند. تقاضای استفاده از بیش از یک زبان به اتصال کارآمدتری در مغز نیاز دارد، که منجر به تراکم ماده سفید بیشتر برای چند زبان می‌شود.

در حالی که هنوز بحث شده‌است که آیا این تغییرات در مغز ناشی از تمایل ژنتیکی یا تقاضاهای زیست‌محیطی است، اما بسیاری از شواهد نشان می‌دهد که تجربه محیطی، اجتماعی در چند زبانه اولیه بر سازماندهی مجدد ساختاری و عملکردی در مغز تأثیر می‌گذارد.

تحریریه وب سایت

تب و تشنج در کودکان
درباره مغز چه سوالاتی دارید؟
درباره مغزمان بیشتر بدانیم
بپرسید
مغزمان را بیشتر بشناسیم

دیدگاه خود را بنویسید

ایمیل شما به دیگر کاربران نمایش داده نمی شود